Klasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization
نویسندگان
چکیده
Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yang rendah. Penelitian ini mengusulkan algoritma Particle Swarm Optimization (PSO) dalam training Neural Network untuk optimasi penentuan nilai bobot Neural Network dalam klasifikasi data Cardiotocography. Principal Component Analysis (PCA) diimplementasikan untuk reduksi fitur data Cardiotocography. Berdasarkan hasil uji coba, implementasi Principal Component Analysis mampu meningkatkan akurasi klasifikasi sebesar rerata 0.04%. Sedangkan optimasi Particle Swarm Optimization pada proses training Neural Network menghasilkan peningkatan kecepatan komputasi sebesar rerata 6 kali pada berbagai jumlah Neuron dan nilai learning rate yang berbeda dengan nilai perbedaan akurasi klasifikasi yang tidak signifikan.
منابع مشابه
Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling
Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملOptimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network
This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...
متن کاملSistem penunjang keputusan kelayakan pemberian pinjaman dengna metode fuzzy tsukamoto
Abstrak – Sistem penunjang keputusan (SPK) dapat digunakan untuk membantu penyelesaikan permasalahan atau pengambilan keputusan yang bersifat semi terstruktur atau terstruktur. Metode yang digunakan adalah Fuzzy Tsukamoto. PT Triprima Finance merupakan suatu perusahaan yang bergerak di bidang jasa peminjaman dengan jaminan berupa Buku Pemilik Kenderaan Bermotor atau mobil (BPKB). PT. Triprima F...
متن کاملComparative Analysis of Neural Network Training Methods in Real-time Radiotherapy
Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients.Objective: This study evaluates the accuracy ...
متن کامل